2145. 统计隐藏数组数目
给你一个下标从 0 开始且长度为 n 的整数数组 differences ,它表示一个长度为 n + 1 的 隐藏 数组 相邻 元素之间的 差值 。更正式的表述为:我们将隐藏数组记作 hidden ,那么 differences[i] = hidden[i + 1] - hidden[i] 。
同时给你两个整数 lower 和 upper ,它们表示隐藏数组中所有数字的值都在 闭 区间 [lower, upper] 之间。
比方说,differences = [1, -3, 4] ,lower = 1 ,upper = 6 ,那么隐藏数组是一个长度为 4 且所有值都在 1 和 6 (包含两者)之间的数组。
[3, 4, 1, 5] 和 [4, 5, 2, 6] 都是符合要求的隐藏数组。
[5, 6, 3, 7] 不符合要求,因为它包含大于 6 的元素。
[1, 2, 3, 4] 不符合要求,因为相邻元素的差值不符合给定数据。
请你返回 符合 要求的隐藏数组的数目。如果没有符合要求的隐藏数组,请返回 0 。
示例一:
输入:differences = [1,-3,4], lower = 1, upper = 6
输出:2
解释:符合要求的隐藏数组为:
- [3, 4, 1, 5]
- [4, 5, 2, 6]
所以返回 2 。
示例二:
输入:differences = [3,-4,5,1,-2], lower = -4, upper = 5
输出:4
解释:符合要求的隐藏数组为:
- [-3, 0, -4, 1, 2, 0]
- [-2, 1, -3, 2, 3, 1]
- [-1, 2, -2, 3, 4, 2]
- [0, 3, -1, 4, 5, 3]
所以返回 4 。
示例三:
输入:differences = [4,-7,2], lower = 3, upper = 6
输出:0
解释:没有符合要求的隐藏数组,所以返回 0 。
解题方法:确定隐藏数组上下边界的差值
class Solution {
func numberOfArrays(_ differences: [Int], _ lower: Int, _ upper: Int) -> Int {
var mn = 0
var mx = 0
var curr = 0
for d in differences {
curr = curr + d
mn = min(mn, curr)
mx = max(mx, curr)
}
return max((upper - lower) - (mx - mn) + 1, 0)
}
}
解题思路
本题的思路主要是确定隐藏数组上下边界的差值(所有隐藏数组的上下边界差值是不变的)。假设隐藏数组的第一个元素是 0,遍历 differences,那么我们就可以依次得到隐藏数组的剩余元素,同时也就可以得到隐藏数组的最小值和最大值。这时候我们有了隐藏数组的上下边界差值,以及我们限定的范围 [lower, upper]。那么隐藏数组的数目即为:
max((upper - lower) - (max - min) + 1, 0)
复杂度分析
- 时间复杂度:
O(N)
- 空间复杂度:
O(1)